Aggregate Certainty estimators

نویسندگان

  • Kristine Monteith
  • Tony R. Martinez
چکیده

Selecting an effective method for combining the votes of base inducers in a multiclassifier system can have a significant impact on the system’s overall classification accuracy. Some methods cannot even achieve as high a classification accuracy as the most accurate base classifier. To address this issue, we present the strategy of aggregate certainty estimators, which uses multiple measures to estimate a classifier’s certainty in its predictions on an instance-by-instance basis. Use of these certainty estimators for vote-weighting allows the system to achieve a higher overall average in classification accuracy than the most accurate base classifier. Weighting with these aggregate measures also results in higher average classification accuracy than weighting with single certainty estimates. Aggregate certainty estimators outperform three baseline strategies, as well as the methods of modified stacking and arbitration, in terms of average accuracy over 36 data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Estimators for Aggregate Relational Algebra Queries

CASE-DB is a relational database management system that allows users to specify time constraints in queries. For an aggregate query AGG(E) where AGG is one of COUNT, SUM and AVERAGE, and E is a relational algebra expression, CASE-DB uses statistical estimators to approximate the query. This paper extends our earlier work on statistical estimators of CASE-DB with the following features: (a) New ...

متن کامل

Sharp Oracle Inequalities for Aggregation of Affine Estimators

We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinati...

متن کامل

Optimal aggregation of affine estimators

We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinati...

متن کامل

Aggregating Density Estimators: An Empirical Study

Density estimation methods based on aggregating several estimators are described and compared over several simulation models. We show that aggregation gives rise in general to better estimators than simple methods like histograms or kernel density estimators. We suggest three new simple algorithms which aggregate histograms and compare very well to all the existing methods.

متن کامل

On the estimation of buffer overflow probabilities from measurements

We propose estimators of the buffer overflow probability in queues fed by a Markov-modulated input process and serviced by an autocorrelated service process. These estimators are based on large-deviations asymptotics for the overflow probability. We demonstrate that the proposed estimators are less likely to underestimate the overflow probability than the estimator obtained by certainty equival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Intelligence

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013